Compare commits
No commits in common. "main" and "docs" have entirely different histories.
8 changed files with 143 additions and 892 deletions
11
README.md
11
README.md
|
|
@ -25,20 +25,17 @@ In Python:
|
|||
from setclass import SetClass
|
||||
sc = SetClass(0, 3, 5, 6, 7, 10, 11) # Forte 7-20; pitch classes as integers 0-11
|
||||
sc.versions
|
||||
sc.rahn_normal_form
|
||||
sc.forte_name
|
||||
sc.brightest_form
|
||||
sc.darkest_form
|
||||
sc.duodecimal_notation # SetClass[0,3,5,6,7,T,E]
|
||||
```
|
||||
|
||||
Documentation is generated from the doc comments with Sphinx, and in the meantime is available [here](https://git.jon.geek.nz/docs/public/setclass/setclass.html):
|
||||
Proper library documentation to come soon with Sphinx.
|
||||
|
||||
```
|
||||
make -C docs html
|
||||
```
|
||||
|
||||
## TODO
|
||||
|
||||
- <s>Documentation (Sphinx)</s>
|
||||
- Documentation (Sphinx)
|
||||
- Interoperate with music21 objects
|
||||
- Generate MIDI files
|
||||
- Generate LilyPond files for set pitches
|
||||
|
|
|
|||
|
|
@ -3,9 +3,8 @@
|
|||
|
||||
# You can set these variables from the command line, and also
|
||||
# from the environment for the first two.
|
||||
PROJROOT := $(abspath $(MAKEFILE_LIST)/../..)
|
||||
SPHINXOPTS ?=
|
||||
SPHINXBUILD ?= PYTHONPATH="$(PROJROOT)" sphinx-build
|
||||
SPHINXBUILD ?= sphinx-build
|
||||
SOURCEDIR = source
|
||||
BUILDDIR = build
|
||||
|
||||
|
|
|
|||
|
|
@ -28,7 +28,6 @@ release = '0.1'
|
|||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
|
||||
|
||||
extensions = [
|
||||
'sphinx.ext.napoleon',
|
||||
'sphinx.ext.autodoc',
|
||||
'sphinx.ext.todo',
|
||||
'sphinx.ext.viewcode',
|
||||
|
|
@ -62,7 +61,9 @@ source_suffix = {
|
|||
# -- Options for HTML output -------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
|
||||
html_theme = 'sphinx_rtd_theme'
|
||||
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
|
||||
html_theme_options = {
|
||||
'display_version': False,
|
||||
'navigation_depth': 2,
|
||||
'prev_next_buttons_location': 'None'
|
||||
}
|
||||
|
|
|
|||
|
|
@ -6,8 +6,6 @@ setclass module
|
|||
|
||||
.. automodule:: setclass.setclass
|
||||
:members:
|
||||
:special-members: __init__
|
||||
:member-order: bysource
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
|
||||
|
|
|
|||
|
|
@ -1,4 +1,3 @@
|
|||
# Main requirements
|
||||
-r requirements.txt
|
||||
|
||||
# Code lint
|
||||
|
|
@ -15,6 +14,5 @@ tox
|
|||
|
||||
# Documentation
|
||||
sphinx
|
||||
sphinx-rtd-theme
|
||||
sphinxcontrib-napoleon
|
||||
sphinx_rtd_theme
|
||||
myst-parser
|
||||
|
|
|
|||
|
|
@ -1,353 +0,0 @@
|
|||
FORTE_PRIMES = {
|
||||
1: '1-1',
|
||||
3: '2-1',
|
||||
5: '2-2',
|
||||
9: '2-3',
|
||||
17: '2-4',
|
||||
33: '2-5',
|
||||
65: '2-6',
|
||||
7: '3-1',
|
||||
11: '3-2',
|
||||
13: '3-2',
|
||||
19: '3-3',
|
||||
25: '3-3',
|
||||
35: '3-4',
|
||||
49: '3-4',
|
||||
67: '3-5',
|
||||
97: '3-5',
|
||||
21: '3-6',
|
||||
37: '3-7',
|
||||
41: '3-7',
|
||||
69: '3-8',
|
||||
81: '3-8',
|
||||
133: '3-9',
|
||||
73: '3-10',
|
||||
137: '3-11',
|
||||
145: '3-11',
|
||||
273: '3-12',
|
||||
15: '4-1',
|
||||
23: '4-2',
|
||||
29: '4-2',
|
||||
27: '4-3',
|
||||
39: '4-4',
|
||||
57: '4-4',
|
||||
71: '4-5',
|
||||
113: '4-5',
|
||||
135: '4-6',
|
||||
51: '4-7',
|
||||
99: '4-8',
|
||||
195: '4-9',
|
||||
45: '4-10',
|
||||
43: '4-11',
|
||||
53: '4-11',
|
||||
77: '4-12',
|
||||
89: '4-12',
|
||||
75: '4-13',
|
||||
105: '4-13',
|
||||
141: '4-14',
|
||||
177: '4-14',
|
||||
83: '4-Z15',
|
||||
101: '4-Z15',
|
||||
163: '4-16',
|
||||
197: '4-16',
|
||||
153: '4-17',
|
||||
147: '4-18',
|
||||
201: '4-18',
|
||||
275: '4-19',
|
||||
281: '4-19',
|
||||
291: '4-20',
|
||||
85: '4-21',
|
||||
149: '4-22',
|
||||
169: '4-22',
|
||||
165: '4-23',
|
||||
277: '4-24',
|
||||
325: '4-25',
|
||||
297: '4-26',
|
||||
293: '4-27',
|
||||
329: '4-27',
|
||||
585: '4-28',
|
||||
139: '4-Z29',
|
||||
209: '4-Z29',
|
||||
31: '5-1',
|
||||
47: '5-2',
|
||||
61: '5-2',
|
||||
55: '5-3',
|
||||
59: '5-3',
|
||||
79: '5-4',
|
||||
121: '5-4',
|
||||
143: '5-5',
|
||||
241: '5-5',
|
||||
103: '5-6',
|
||||
115: '5-6',
|
||||
199: '5-7',
|
||||
227: '5-7',
|
||||
93: '5-8',
|
||||
87: '5-9',
|
||||
117: '5-9',
|
||||
91: '5-10',
|
||||
109: '5-10',
|
||||
157: '5-11',
|
||||
185: '5-11',
|
||||
107: '5-Z12',
|
||||
279: '5-13',
|
||||
285: '5-13',
|
||||
167: '5-14',
|
||||
229: '5-14',
|
||||
327: '5-15',
|
||||
155: '5-16',
|
||||
217: '5-16',
|
||||
283: '5-Z17',
|
||||
179: '5-Z18',
|
||||
205: '5-Z18',
|
||||
203: '5-19',
|
||||
211: '5-19',
|
||||
355: '5-20',
|
||||
397: '5-20',
|
||||
307: '5-21',
|
||||
409: '5-21',
|
||||
403: '5-22',
|
||||
173: '5-23',
|
||||
181: '5-23',
|
||||
171: '5-24',
|
||||
213: '5-24',
|
||||
301: '5-25',
|
||||
361: '5-25',
|
||||
309: '5-26',
|
||||
345: '5-26',
|
||||
299: '5-27',
|
||||
425: '5-27',
|
||||
333: '5-28',
|
||||
357: '5-28',
|
||||
331: '5-29',
|
||||
421: '5-29',
|
||||
339: '5-30',
|
||||
405: '5-30',
|
||||
587: '5-31',
|
||||
589: '5-31',
|
||||
595: '5-32',
|
||||
613: '5-32',
|
||||
341: '5-33',
|
||||
597: '5-34',
|
||||
661: '5-35',
|
||||
151: '5-Z36',
|
||||
233: '5-Z36',
|
||||
313: '5-Z37',
|
||||
295: '5-Z38',
|
||||
457: '5-Z38',
|
||||
63: '6-1',
|
||||
95: '6-2',
|
||||
125: '6-2',
|
||||
111: '6-Z3',
|
||||
123: '6-Z3',
|
||||
119: '6-Z4',
|
||||
207: '6-5',
|
||||
243: '6-5',
|
||||
231: '6-Z6',
|
||||
455: '6-7',
|
||||
189: '6-8',
|
||||
175: '6-9',
|
||||
245: '6-9',
|
||||
187: '6-Z10',
|
||||
221: '6-Z10',
|
||||
183: '6-Z11',
|
||||
237: '6-Z11',
|
||||
215: '6-Z12',
|
||||
235: '6-Z12',
|
||||
219: '6-Z13',
|
||||
315: '6-14',
|
||||
441: '6-14',
|
||||
311: '6-15',
|
||||
473: '6-15',
|
||||
371: '6-16',
|
||||
413: '6-16',
|
||||
407: '6-Z17',
|
||||
467: '6-Z17',
|
||||
423: '6-18',
|
||||
459: '6-18',
|
||||
411: '6-Z19',
|
||||
435: '6-Z19',
|
||||
819: '6-20',
|
||||
349: '6-21',
|
||||
373: '6-21',
|
||||
343: '6-22',
|
||||
469: '6-22',
|
||||
365: '6-Z23',
|
||||
347: '6-Z24',
|
||||
437: '6-Z24',
|
||||
363: '6-Z25',
|
||||
429: '6-Z25',
|
||||
427: '6-Z26',
|
||||
603: '6-27',
|
||||
621: '6-27',
|
||||
619: '6-Z28',
|
||||
717: '6-Z29',
|
||||
715: '6-30',
|
||||
845: '6-30',
|
||||
691: '6-31',
|
||||
821: '6-31',
|
||||
693: '6-32',
|
||||
685: '6-33',
|
||||
725: '6-33',
|
||||
683: '6-34',
|
||||
853: '6-34',
|
||||
1365: '6-35',
|
||||
159: '6-Z36',
|
||||
249: '6-Z36',
|
||||
287: '6-Z37',
|
||||
399: '6-Z38',
|
||||
317: '6-Z39',
|
||||
377: '6-Z39',
|
||||
303: '6-Z40',
|
||||
489: '6-Z40',
|
||||
335: '6-Z41',
|
||||
485: '6-Z41',
|
||||
591: '6-Z42',
|
||||
359: '6-Z43',
|
||||
461: '6-Z43',
|
||||
615: '6-Z44',
|
||||
627: '6-Z44',
|
||||
605: '6-Z45',
|
||||
599: '6-Z46',
|
||||
629: '6-Z46',
|
||||
663: '6-Z47',
|
||||
669: '6-Z47',
|
||||
679: '6-Z48',
|
||||
667: '6-Z49',
|
||||
723: '6-Z50',
|
||||
127: '7-1',
|
||||
191: '7-2',
|
||||
253: '7-2',
|
||||
319: '7-3',
|
||||
505: '7-3',
|
||||
223: '7-4',
|
||||
251: '7-4',
|
||||
239: '7-5',
|
||||
247: '7-5',
|
||||
415: '7-6',
|
||||
499: '7-6',
|
||||
463: '7-7',
|
||||
487: '7-7',
|
||||
381: '7-8',
|
||||
351: '7-9',
|
||||
501: '7-9',
|
||||
607: '7-10',
|
||||
637: '7-10',
|
||||
379: '7-11',
|
||||
445: '7-11',
|
||||
671: '7-Z12',
|
||||
375: '7-13',
|
||||
477: '7-13',
|
||||
431: '7-14',
|
||||
491: '7-14',
|
||||
471: '7-15',
|
||||
623: '7-16',
|
||||
635: '7-16',
|
||||
631: '7-Z17',
|
||||
755: '7-Z18',
|
||||
829: '7-Z18',
|
||||
719: '7-19',
|
||||
847: '7-19',
|
||||
743: '7-20',
|
||||
925: '7-20',
|
||||
823: '7-21',
|
||||
827: '7-21',
|
||||
871: '7-22',
|
||||
701: '7-23',
|
||||
757: '7-23',
|
||||
687: '7-24',
|
||||
981: '7-24',
|
||||
733: '7-25',
|
||||
749: '7-25',
|
||||
699: '7-26',
|
||||
885: '7-26',
|
||||
695: '7-27',
|
||||
949: '7-27',
|
||||
747: '7-28',
|
||||
861: '7-28',
|
||||
727: '7-29',
|
||||
941: '7-29',
|
||||
855: '7-30',
|
||||
939: '7-30',
|
||||
731: '7-31',
|
||||
877: '7-31',
|
||||
859: '7-32',
|
||||
875: '7-32',
|
||||
1367: '7-33',
|
||||
1371: '7-34',
|
||||
1387: '7-35',
|
||||
367: '7-Z36',
|
||||
493: '7-Z36',
|
||||
443: '7-Z37',
|
||||
439: '7-Z38',
|
||||
475: '7-Z38',
|
||||
255: '8-1',
|
||||
383: '8-2',
|
||||
509: '8-2',
|
||||
639: '8-3',
|
||||
447: '8-4',
|
||||
507: '8-4',
|
||||
479: '8-5',
|
||||
503: '8-5',
|
||||
495: '8-6',
|
||||
831: '8-7',
|
||||
927: '8-8',
|
||||
975: '8-9',
|
||||
765: '8-10',
|
||||
703: '8-11',
|
||||
1013: '8-11',
|
||||
763: '8-12',
|
||||
893: '8-12',
|
||||
735: '8-13',
|
||||
1005: '8-13',
|
||||
759: '8-14',
|
||||
957: '8-14',
|
||||
863: '8-Z15',
|
||||
1003: '8-Z15',
|
||||
943: '8-16',
|
||||
983: '8-16',
|
||||
891: '8-17',
|
||||
879: '8-18',
|
||||
987: '8-18',
|
||||
887: '8-19',
|
||||
955: '8-19',
|
||||
951: '8-20',
|
||||
1375: '8-21',
|
||||
1391: '8-22',
|
||||
1403: '8-22',
|
||||
1455: '8-23',
|
||||
1399: '8-24',
|
||||
1495: '8-25',
|
||||
1467: '8-26',
|
||||
1463: '8-27',
|
||||
1499: '8-27',
|
||||
1755: '8-28',
|
||||
751: '8-Z29',
|
||||
989: '8-Z29',
|
||||
511: '9-1',
|
||||
767: '9-2',
|
||||
1021: '9-2',
|
||||
895: '9-3',
|
||||
1019: '9-3',
|
||||
959: '9-4',
|
||||
1015: '9-4',
|
||||
991: '9-5',
|
||||
1007: '9-5',
|
||||
1407: '9-6',
|
||||
1471: '9-7',
|
||||
1531: '9-7',
|
||||
1503: '9-8',
|
||||
1527: '9-8',
|
||||
1519: '9-9',
|
||||
1759: '9-10',
|
||||
1775: '9-11',
|
||||
1783: '9-11',
|
||||
1911: '9-12',
|
||||
1023: '10-1',
|
||||
1535: '10-2',
|
||||
1791: '10-3',
|
||||
1919: '10-4',
|
||||
1983: '10-5',
|
||||
2015: '10-6',
|
||||
2047: '11-1',
|
||||
4095: '12-1',
|
||||
}
|
||||
|
|
@ -1,37 +1,37 @@
|
|||
#!/usr/bin/env python3
|
||||
from __future__ import annotations
|
||||
from functools import cached_property
|
||||
import re
|
||||
|
||||
|
||||
class cache_property:
|
||||
"""
|
||||
Property that only computes its value once when first accessed, and caches the result.
|
||||
"""
|
||||
|
||||
def __init__(self, function):
|
||||
self.function = function
|
||||
self.name = function.__name__
|
||||
self.__doc__ = function.__doc__
|
||||
|
||||
def __get__(self, obj, type=None) -> object:
|
||||
obj.__dict__[self.name] = self.function(obj)
|
||||
return obj.__dict__[self.name]
|
||||
|
||||
|
||||
class SetClass(list):
|
||||
"""
|
||||
Musical set class, containing zero or more pitch classes. This implementation can handle set
|
||||
classes of any arbitrary :attr:`tonality`, or number of uniform divisions of the octave.
|
||||
Musical set class, containing zero or more pitch classes.
|
||||
"""
|
||||
|
||||
def __init__(self, *args: int, tonality: int = 12) -> None:
|
||||
"""
|
||||
Instantiate a :class:`ClassSet` object with a series of integers.
|
||||
Instantiate a Class Set with a series of integers. Each pitch class is "normalised" by
|
||||
modulo the tonality; the set is sorted in ascending order; and values "rotated" until the
|
||||
lowest value is 0. For a number of divisions of the octave other than the default (Western
|
||||
harmony) value of 12, supply an integer value using the 'tonality' keyword. Example:
|
||||
|
||||
Each supplied pitch class is "normalised" by modulo the :attr:`tonality`, the set is
|
||||
sorted in ascending order, and values are transposed until the lowest pitch class value is
|
||||
0. For a number of divisions of the octave other than the default (Western harmony) value of
|
||||
12, supply an integer value using the 'tonality' keyword. Example:
|
||||
|
||||
>>> sc1 = SetClass(0, 7, 9)
|
||||
>>> sc1
|
||||
SetClass{0,7,9}
|
||||
>>> sc2 = SetClass(0, 2, 3, tonality=7)
|
||||
>>> sc2
|
||||
SetClass{0,2,3} (T=7)
|
||||
|
||||
Args:
|
||||
*args (int):
|
||||
The pitch class values.
|
||||
tonality (int):
|
||||
The :attr:`tonality`, or modulus, is the number of uniform divisions of the octave.
|
||||
If unspecified, the default value of 12 is assumed (Western harmony).
|
||||
sc = SetClass(0, 7, 9)
|
||||
sc = SetClass(0, 2, 3, tonality=7)
|
||||
"""
|
||||
self._tonality = tonality
|
||||
|
||||
|
|
@ -41,7 +41,7 @@ class SetClass(list):
|
|||
try:
|
||||
pitches.add(int(i) % tonality)
|
||||
except ValueError:
|
||||
raise TypeError("Requires integer arguments (use 10 and 11 for 'T' and 'E')")
|
||||
raise ValueError("Requires integer arguments (use 10 and 11 for 'T' and 'E')")
|
||||
|
||||
# if necessary "rotate" so that the lowest non-zero interval is zero
|
||||
if pitches:
|
||||
|
|
@ -53,60 +53,38 @@ class SetClass(list):
|
|||
super().append(i)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""Return a string representation of this instance."""
|
||||
"""Return the Python instance string representation."""
|
||||
s = f"SetClass{{{','.join(str(i) for i in self.pitch_classes)}}}"
|
||||
return s if self.tonality == 12 else f"{s} (T={self.tonality})"
|
||||
|
||||
def __hash__(self) -> int:
|
||||
"""Return a unique identifier for the instance, based on the :attr:`pitch_classes` used."""
|
||||
return sum([hash(i) for i in self.pitch_classes])
|
||||
|
||||
@property
|
||||
def pitch_classes(self) -> list(int):
|
||||
"""The pitch classes as an ordered :class:`list` of integers."""
|
||||
def pitch_classes(self) -> list:
|
||||
return list(self)
|
||||
|
||||
@cached_property
|
||||
@cache_property
|
||||
def tonality(self) -> int:
|
||||
"""
|
||||
The number of uniform divisions of the octave. The default value is 12, which
|
||||
Returns the number of (equal) divisions of the octave. The default value is 12, which
|
||||
represents traditional Western chromatic harmony, the octave divided into twelve semitones.
|
||||
"""
|
||||
return self._tonality
|
||||
|
||||
@cached_property
|
||||
@cache_property
|
||||
def cardinality(self) -> int:
|
||||
"""
|
||||
The cardinality of the set class, i.e. the number of :attr:`pitch_classes`.
|
||||
"""
|
||||
"""Returns the cardinality of the set class, i.e. the number of pitch classes."""
|
||||
return len(self.pitch_classes)
|
||||
|
||||
@cached_property
|
||||
@cache_property
|
||||
def brightness(self) -> int:
|
||||
"""
|
||||
The brightness of the set class.
|
||||
|
||||
Brightness (B) is a property proposed by Brian Leonard, defined as the sum of the values of
|
||||
the :attr:`pitch_classes` in the set class.
|
||||
"""
|
||||
"""Returns the brightness of the set class, defined as the sum of the pitch class values."""
|
||||
return sum(self.pitch_classes)
|
||||
|
||||
@cached_property
|
||||
def decimal(self) -> int:
|
||||
"""
|
||||
The decimal value of the binary representation of the :attr:`pitch_classes`.
|
||||
|
||||
Returns the decimal value of the pitch classes expressed as a binary bit mask, i.e. the sum
|
||||
of 2ⁱ where i is each pitch class value in ascending order. For example, set class {0,1,4,6}
|
||||
has a binary value of 000001010011, which is the decimal value 83.
|
||||
|
||||
Further reading: Goyette (2012) p. 25, citing Brinkman (1986).
|
||||
"""
|
||||
return sum([2**i for i in self.pitch_classes])
|
||||
|
||||
@cached_property
|
||||
def adjacency_intervals(self) -> list(int):
|
||||
"""The ordered :class:`list` of adjacency intervals between the pitch classes."""
|
||||
@cache_property
|
||||
def adjacency_intervals(self) -> list:
|
||||
"""Adjacency intervals between the pitch classes, used for Leonard notation subscripts."""
|
||||
if not self.pitch_classes:
|
||||
return list()
|
||||
intervals = list()
|
||||
|
|
@ -118,85 +96,52 @@ class SetClass(list):
|
|||
intervals.append(self.tonality - prev)
|
||||
return intervals
|
||||
|
||||
@cached_property
|
||||
@cache_property
|
||||
def z_relations(self) -> list:
|
||||
"""
|
||||
Return all distinct set classes with the same interval vector (Allen Forte: "Z-related").
|
||||
For example, Forte 4-Z15 {0,1,4,6} and Forte 4-Z29 {0,1,3,7} both have iv⟨1,1,1,1,1,1⟩ but
|
||||
are not inversions, complements, or transpositions (rotations) of each other.
|
||||
"""
|
||||
return [i for i in SetClass.darkest_of_cardinality(self.cardinality) if i.interval_vector == self.interval_vector]
|
||||
|
||||
@cache_property
|
||||
def interval_vector(self) -> list:
|
||||
"""
|
||||
An ordered :class:`list` containing the multiplicities of each interval class in the set
|
||||
class. Denoted in angle-brackets, e.g. the interval vector of {0,2,4,5,7,9,11} is
|
||||
⟨2,5,4,3,6,1⟩. Each element in the vector is the frequency of occurrence of the interval
|
||||
represented by its ordinal position, i.e. ⟨2,5,4,3,6,1⟩ means two semitones, five major
|
||||
seconds, four minor thirds, and so on. — Rahn (1980), p. 100.
|
||||
An ordered tuple containing the multiplicities of each interval class in the set class.
|
||||
Denoted in angle-brackets, e.g.
|
||||
The interval vector of {0,2,4,5,7,9,11} is ⟨2,5,4,3,6,1⟩
|
||||
— Rahn (1980), p. 100
|
||||
"""
|
||||
from itertools import combinations
|
||||
iv = [0 for i in range(1, int(self.tonality / 2) + 1)]
|
||||
for (a, b) in combinations(self.pitch_classes, 2):
|
||||
ic = self.unordered_interval(a, b)
|
||||
ic = SetClass.unordered_interval(a, b)
|
||||
iv[ic - 1] += 1
|
||||
return iv
|
||||
|
||||
@cached_property
|
||||
def z_relations(self) -> list:
|
||||
def ordered_interval(a: int, b: int) -> int:
|
||||
"""
|
||||
A :class:`list` of the Z-relations of this set class.
|
||||
|
||||
Allen Forte in his book *The Structure of Atonal Music* (1973) described the relationship
|
||||
between twins of set classes that share the same :attr:`interval_vector`, but are not
|
||||
related by :attr:`inversion`, :attr:`complement`, or transposition, as Z-related ('Z' for
|
||||
*zygote* from Greek: ζυγωτός, 'joined' or 'paired'). This property returns all distinct set
|
||||
classes with the same interval vector.
|
||||
|
||||
For example, Forte 4-Z15 {0,1,4,6} and Forte 4-Z29 {0,1,3,7} both have iv⟨1,1,1,1,1,1⟩ but
|
||||
are not inversions, complements, or transpositions of each other.
|
||||
The ordered interval or "directed interval" (Babbitt) of two pitch classes is determined by
|
||||
the difference of the pitch class values, modulo 12:
|
||||
i⟨a,b⟩ = b-a mod 12 — Rahn (1980), p. 25
|
||||
"""
|
||||
return [i for i in SetClass.darkest_of_cardinality(self.cardinality) if i.interval_vector == self.interval_vector]
|
||||
return (b % 12 - a % 12) % 12
|
||||
|
||||
def ordered_interval(self, a: int, b: int) -> int:
|
||||
def unordered_interval(a: int, b: int) -> int:
|
||||
"""
|
||||
Return the ordered interval of two pitch classes.
|
||||
|
||||
The ordered interval, or "directed interval" (Babbitt) of two :attr:`pitch_classes` is
|
||||
determined by the difference of the pitch class values, modulo :attr:`tonality`. For example
|
||||
with tonality 12:
|
||||
|
||||
i⟨a,b⟩ = b-a mod 12
|
||||
|
||||
— Rahn (1980), p. 25
|
||||
|
||||
Args:
|
||||
a (int): the first pitch class value.
|
||||
b (int): the second pitch class value.
|
||||
|
||||
Returns:
|
||||
The ordered interval as ann integer.
|
||||
"""
|
||||
return (b % self.tonality - a % self.tonality) % self.tonality
|
||||
|
||||
def unordered_interval(self, a: int, b: int) -> int:
|
||||
"""
|
||||
Return the unordered interval of two pitch classes.
|
||||
|
||||
The unordered interval (also "interval distance", "interval class", "ic", or "undirected
|
||||
interval") of two :attr:`pitch_classes` is the smaller of the possible values of
|
||||
:attr:`ordered_interval` (differences in pitch class value):
|
||||
|
||||
i(a,b) = min: i⟨a,b⟩, i⟨b,a⟩
|
||||
|
||||
— Rahn (1980), p. 28
|
||||
|
||||
Args:
|
||||
a (int): the first pitch class value.
|
||||
b (int): the second pitch class value.
|
||||
|
||||
Returns:
|
||||
The ordered interval as ann integer.
|
||||
interval") of two pitch classes is the smaller of the two possible ordered intervals
|
||||
(differences in pitch class value):
|
||||
i(a,b) = min: i⟨a,b⟩, i⟨b,a⟩ — Rahn (1980), p. 28
|
||||
"""
|
||||
return min(self.ordered_interval(a, b), self.ordered_interval(b, a))
|
||||
return min(SetClass.ordered_interval(a, b), SetClass.ordered_interval(b, a))
|
||||
|
||||
@cached_property
|
||||
def versions(self) -> list(SetClass):
|
||||
@cache_property
|
||||
def versions(self) -> list:
|
||||
"""
|
||||
All possible zero-normalised transpositions of this set class, sorted by :attr:`brightness`.
|
||||
See Rahn (1980), Tₙ set types.
|
||||
Returns all possible zero-normalised versions (clock rotations) of this set class,
|
||||
sorted by brightness. See Rahn (1980) Set types, Tₙ
|
||||
"""
|
||||
# The empty set class has one version, itself
|
||||
if not self.pitch_classes:
|
||||
|
|
@ -210,16 +155,12 @@ class SetClass(list):
|
|||
versions.sort(key=lambda x: x.brightness)
|
||||
return versions
|
||||
|
||||
@cached_property
|
||||
@cache_property
|
||||
def rahn_normal_form(self) -> SetClass:
|
||||
"""
|
||||
The Rahn normal form of the set class.
|
||||
|
||||
John Rahn's normal form described in his book *Basic Atonal Theory* (1980) is an algorithm
|
||||
to produce a unique form for each set class. Often wrongly described as "most packed to the
|
||||
left", Leonard describes it as "most dispersed from the right". Find the smallest outside
|
||||
interval, and if necessary proceed inwards from the right finding the smallest next interval
|
||||
until one result remains. See Rahn (1980), p. 33.
|
||||
Return the Rahn normal form of the set class; Leonard describes this as "most dispersed from
|
||||
the right". Find the smallest outside interval, and proceed inwards from the right until one
|
||||
result remains. See Rahn (1980), p. 33
|
||||
"""
|
||||
def _most_dispersed(versions, n):
|
||||
return [i for i in versions if i.pitch_classes[-n] == min([i.pitch_classes[-n] for i in versions])]
|
||||
|
|
@ -231,20 +172,11 @@ class SetClass(list):
|
|||
n += 1
|
||||
return versions[0]
|
||||
|
||||
@cached_property
|
||||
def rahn_prime_form(self) -> SetClass:
|
||||
"""
|
||||
The Rahn prime is the most dispersed from the right of the Rahn normal forms of a set class
|
||||
and its inversion.
|
||||
"""
|
||||
prime = min(self.rahn_normal_form.decimal, self.inversion.rahn_normal_form.decimal)
|
||||
return self.inversion.rahn_normal_form if self.inversion.rahn_normal_form.decimal == prime else self.inversion.rahn_normal_form
|
||||
|
||||
@cached_property
|
||||
@cache_property
|
||||
def packed_left(self) -> SetClass:
|
||||
"""
|
||||
The form of the set class that is most packed to the left (the smallest adjacency intervals
|
||||
to the left). Find the smallest first adjacency interval, and proceed towards the right
|
||||
Return the form of the set class that is most packed to the left (smallest adjacency
|
||||
intervals to the left). Find the smallest adjacency interval, and proceed towards the right
|
||||
until one result remains.
|
||||
"""
|
||||
def _most_packed(versions, n):
|
||||
|
|
@ -257,15 +189,14 @@ class SetClass(list):
|
|||
n += 1
|
||||
return versions[0]
|
||||
|
||||
@cached_property
|
||||
@cache_property
|
||||
def prime_form(self) -> SetClass:
|
||||
"""
|
||||
Return the prime form of the set class.
|
||||
|
||||
Allen Forte describes the algorithm for finding this normal form in his book *The Structure
|
||||
of Atonal Music* (1973) in section 1.2 (pp. 3-5), citing Milton Babbitt (1961). Find the
|
||||
forms with the smallest outside interval, and if necessary chose the form most packed to the
|
||||
left (the smallest adjacency intervals working from left to right).
|
||||
Return the prime form of the set class. Find the forms with the smallest outside interval,
|
||||
and if necessary chose the form most packed to the left (the smallest adjacency intervals
|
||||
working from left to right).
|
||||
Allen Forte describes the algorithm in his book *The Structure of Atonal Music* (1973) in
|
||||
section 1.2 (pp. 3-5), citing Milton Babbitt (1961).
|
||||
"""
|
||||
def _most_packed(versions, n):
|
||||
return [i for i in versions if i.pitch_classes[n] == min([i.pitch_classes[n] for i in versions])]
|
||||
|
|
@ -281,36 +212,14 @@ class SetClass(list):
|
|||
n += 1
|
||||
return versions[0]
|
||||
|
||||
@cached_property
|
||||
def forte_prime(self) -> SetClass:
|
||||
"""
|
||||
Return the Forte prime of the set class, including its inversions. Forte's list of named set
|
||||
classes included inversions, for instance his "3-11" set class has a normal form of {0,3,7}
|
||||
which describes the minor chord, and also describes its (set) inversion {0,5,9} which has a
|
||||
:attr:`prime_form` of {0,4,7}, the major chord.
|
||||
"""
|
||||
return min(self, self.inversion)
|
||||
|
||||
@cached_property
|
||||
def forte_name(self) -> str:
|
||||
"""
|
||||
Return the Forte name of this set class. Only applies to 12-tonality set classes.
|
||||
|
||||
Allen Forte listed and named all possible prime set classes in his book *The Structure
|
||||
of Atonal Music* (1973) in Appendix 1, p. 179-181.
|
||||
"""
|
||||
if self.tonality != 12:
|
||||
return ''
|
||||
from setclass.forte import FORTE_PRIMES
|
||||
d = self.forte_prime.decimal
|
||||
return FORTE_PRIMES[d] if d in FORTE_PRIMES else ''
|
||||
|
||||
@cached_property
|
||||
@cache_property
|
||||
def darkest_form(self) -> SetClass:
|
||||
"""
|
||||
The version of this set class with the smallest :attr:`brightness` value, most packed to the
|
||||
left.
|
||||
Returns the version with the smallest brightness value, most packed to the left.
|
||||
"""
|
||||
if not self.versions:
|
||||
return self
|
||||
|
||||
B = min(i.brightness for i in self.versions)
|
||||
versions = [i for i in self.versions if i.brightness == B]
|
||||
if len(versions) == 1:
|
||||
|
|
@ -325,91 +234,61 @@ class SetClass(list):
|
|||
n += 1
|
||||
return versions[0]
|
||||
|
||||
@cached_property
|
||||
@cache_property
|
||||
def brightest_form(self) -> SetClass:
|
||||
"""
|
||||
The version of this set class with the largest :attr:`brightness` value, most packed to the
|
||||
right.
|
||||
Returns the version with the largest brightness value.
|
||||
TODO: How to break a tie? Or return all matches in a tuple? Sorted by what?
|
||||
"""
|
||||
B = max(i.brightness for i in self.versions)
|
||||
versions = [i for i in self.versions if i.brightness == B]
|
||||
if len(versions) == 1:
|
||||
return versions[0]
|
||||
return self.versions[-1] if self.versions else self
|
||||
|
||||
def _most_packed(versions, n):
|
||||
return [i for i in versions if i.pitch_classes[n] == min([i.pitch_classes[n] for i in versions])]
|
||||
|
||||
n = 0
|
||||
while len(versions) > 1:
|
||||
versions = _most_packed(versions, n)
|
||||
n += 1
|
||||
return versions[0]
|
||||
|
||||
@cached_property
|
||||
@cache_property
|
||||
def inversion(self) -> SetClass:
|
||||
"""
|
||||
The inversion of this set class, transposed so the smallest pitch class is 0. Equivalent to
|
||||
a reflection through the 0 axis on a clock diagram.
|
||||
Returns the inversion of this set class, equivalent of reflection through the 0 axis on a
|
||||
clock diagram.
|
||||
"""
|
||||
return SetClass(*[self.tonality - i for i in self.pitch_classes], tonality=self.tonality)
|
||||
|
||||
@cached_property
|
||||
@cache_property
|
||||
def is_symmetrical(self) -> bool:
|
||||
"""
|
||||
Whether this set class is symmetrical upon inversion, for example Forte 5-Z37:
|
||||
|
||||
>>> sc = SetClass(0, 1, 2, 5, 9)
|
||||
>>> sc.rahn_normal_form
|
||||
SetClass{0,3,4,5,8}
|
||||
>>> sc.inversion.rahn_normal_form
|
||||
SetClass{0,3,4,5,8}
|
||||
>>> sc.is_symmetrical
|
||||
True
|
||||
Returns whether this set class is symmetrical upon inversion, for example Forte 5-Z17:
|
||||
{0,1,2,5,9} → {0,4,8,9,11}
|
||||
"""
|
||||
return self.darkest_form == self.inversion.darkest_form
|
||||
|
||||
@cached_property
|
||||
@cache_property
|
||||
def complement(self) -> SetClass:
|
||||
"""
|
||||
The set class containing all :attr:`pitch_classes` absent in this one, transposed so the
|
||||
smallest pitch class is 0.
|
||||
Returns the set class containing all pitch classes absent in this one (rotated so the
|
||||
smallest is 0).
|
||||
"""
|
||||
return SetClass(*[i for i in range(self.tonality) if i not in self.pitch_classes], tonality=self.tonality)
|
||||
|
||||
@cached_property
|
||||
@cache_property
|
||||
def dozenal_notation(self) -> str:
|
||||
"""
|
||||
A string representation using ↊ and ↋ for 10 and 11.
|
||||
|
||||
For a set class with a :attr:`tonality` no greater than 12, this property replaces the 10
|
||||
and 11 pitch classes with the Dozenal Society characters '↊' and '↋' respectively. These are
|
||||
the Pitman forms from the Unicode 8.0 specification released in 2015.
|
||||
If tonality is no greater than 12, return a string representation using Dozenal Society
|
||||
characters '↊' for 10 and '↋' for 11 (the Pitman forms from Unicode 8.0 release, 2015).
|
||||
"""
|
||||
return f"{self}" if self.tonality > 12 else f"{self}".replace('10', '↊').replace('11', '↋')
|
||||
|
||||
@cached_property
|
||||
@cache_property
|
||||
def duodecimal_notation(self) -> str:
|
||||
"""
|
||||
A string representation using T and E for 10 and 11.
|
||||
|
||||
For a set class with a :attr:`tonality` no greater than 12, this property replaces the 10
|
||||
and 11 pitch classes with the letters 'T' and 'E' respectively.
|
||||
If tonality is no greater than 12, replace 10 and 11 with 'T' and 'E'.
|
||||
"""
|
||||
return f"{self}" if self.tonality > 12 else f"{self}".replace('10', 'T').replace('11', 'E')
|
||||
|
||||
@cached_property
|
||||
@cache_property
|
||||
def leonard_notation(self) -> str:
|
||||
"""
|
||||
The string representation proposed by Brian Leonard.
|
||||
|
||||
Returns a string representation of this set class using subscripts to denote the
|
||||
:attr:`adjacency_intervals` between the pitch classes instead of commas, and the overall
|
||||
:attr:`brightness` (sum of the values of :attr:`pitch_classes`) denoted as a superscript.
|
||||
In standard tonality (T=12) the letters T and E are used for pitch classes 10 and 11. For
|
||||
example, Forte 7-34 would be written as [0₁1₂3₁4₂6₂8₂T₂]⁽³²⁾ in this scheme:
|
||||
|
||||
>>> SetClass.from_string('{0,1,3,4,6,8,10}').leonard_notation
|
||||
[0₁1₂3₁4₂6₂8₂T₂]⁽³²⁾
|
||||
Returns a string representation of this set class using subscripts to denote the adjacency
|
||||
intervals between the pitch classes instead of commas, and the overall brightness (sum of
|
||||
pitch class values) denoted as a superscript. In standard tonality (T=12) the letters T and
|
||||
E are used for pitch classes 10 and 11. For example, Forte 7-34, {0,1,3,4,6,8,10} is
|
||||
notated [0₁1₂3₁4₂6₂8₂T₂]⁽³²⁾.
|
||||
"""
|
||||
# Return numbers as subscript and superscript strings:
|
||||
def subscript(n: int) -> str:
|
||||
|
|
@ -430,107 +309,19 @@ class SetClass(list):
|
|||
# Class methods -----------------------------------------------------------
|
||||
|
||||
@classmethod
|
||||
def from_string(this, string: str, tonality: int = 12) -> SetClass:
|
||||
def from_string(this, string: str) -> SetClass:
|
||||
"""
|
||||
Create a :class:`SetClass` from a string.
|
||||
|
||||
A useful convenience function for converting from various text representations of set
|
||||
classes that contain a sequence of zero or more integers. Non-integer content is ignored,
|
||||
and integers must be separated by some non-integer character(s), usually a space, comma, or
|
||||
similar. For instance:
|
||||
|
||||
>>> SetClass.from_string("Prélude à l'après-midi d'un faune uses [0,2,4,6,8,9]")
|
||||
SetClass{0,2,4,6,8,9}
|
||||
>>> SetClass.from_string('{0, 3, 7}', tonality=8)
|
||||
SetClass{0,3,7} (T=8)
|
||||
|
||||
Args:
|
||||
string (str):
|
||||
Any string representation of a set class, containing some integer content.
|
||||
tonality (int):
|
||||
The :attr:`tonality`, or modulus, is the number of uniform divisions of the octave.
|
||||
If unspecified, the default value of 12 is assumed (Western harmony).
|
||||
|
||||
Returns:
|
||||
A :class:`SetClass` instance with the pitch classes found in the string.
|
||||
Attempt to create a SetClass from any string containing a sequence of zero or more integers.
|
||||
A useful convenience function, e.g. SetClass.from_string('{0,3,7,9}')
|
||||
"""
|
||||
return SetClass(*re.findall(r'\d+', string), tonality=tonality)
|
||||
return SetClass(*re.findall(r'\d+', string))
|
||||
|
||||
@classmethod
|
||||
def from_decimal(this, decimal: int, tonality: int = 12) -> SetClass:
|
||||
def all_of_cardinality(cls, cardinality: int, tonality: int = 12) -> set:
|
||||
"""
|
||||
Create a :class:`SetClass` from its decimal number.
|
||||
|
||||
A useful convenience function for converting from a decimal representation of set classes.
|
||||
For instance:
|
||||
|
||||
>>> SetClass.from_decimal(145)
|
||||
SetClass{0,4,7}
|
||||
>>> SetClass.from_decimal(137, tonality=8)
|
||||
SetClass{0,3,7} (T=8)
|
||||
|
||||
Args:
|
||||
decmial (int):
|
||||
The decimal to convert from.
|
||||
tonality (int):
|
||||
The :attr:`tonality`, or modulus, is the number of uniform divisions of the octave.
|
||||
If unspecified, the default value of 12 is assumed (Western harmony).
|
||||
|
||||
Returns:
|
||||
A :class:`SetClass` instance with the pitch classes encoded in the decimal representation.
|
||||
"""
|
||||
if decimal.bit_length() > tonality:
|
||||
raise ValueError("Decimal number too large for tonality's maximum cardinality")
|
||||
pc = list()
|
||||
for i in range(decimal.bit_length()):
|
||||
if decimal & (2 ** i):
|
||||
pc.append(i)
|
||||
return SetClass(*pc, tonality=tonality)
|
||||
|
||||
@classmethod
|
||||
def from_forte_name(this, name: str) -> SetClass:
|
||||
"""
|
||||
Create a :class:`SetClass` from its Forte prime form designation. Assumes 12-tonality.
|
||||
Name is case insensitive.
|
||||
|
||||
A useful convenience function for creating a set class from its Forte name. For instance:
|
||||
|
||||
>>> SetClass.from_forte_name('3-11')
|
||||
SetClass{0,3,7}
|
||||
|
||||
Args:
|
||||
name (str):
|
||||
The Forte name (case insensitive).
|
||||
|
||||
Returns:
|
||||
A :class:`SetClass` instance in Forte prime form.
|
||||
"""
|
||||
from setclass.forte import FORTE_PRIMES
|
||||
decimal = next((k for k, v in FORTE_PRIMES.items() if v == str(name).upper()), None)
|
||||
if decimal:
|
||||
return SetClass.from_decimal(decimal)
|
||||
else:
|
||||
raise ValueError(f"Forte name '{name}' not found.")
|
||||
|
||||
@classmethod
|
||||
def all_of_cardinality(this, cardinality: int, tonality: int = 12) -> set:
|
||||
"""
|
||||
Returns a :class:`set` of all possible :class:`SetClass` objects with a given
|
||||
:attr:`cardinality`.
|
||||
|
||||
.. warning:: High values of tonality can take a long time to calculate (T=24 takes about a
|
||||
minute on an Intel i7-13700H CPU).
|
||||
|
||||
Args:
|
||||
cardinality (int):
|
||||
The :attr:`cardinality` of the set classes to return.
|
||||
tonality (int):
|
||||
The :attr:`tonality`, or modulus, is the number of uniform divisions of the octave.
|
||||
If unspecified, the default value of 12 is assumed (Western harmony).
|
||||
|
||||
Returns:
|
||||
A :class:`set` of :class:`SetClass` objects.
|
||||
|
||||
Returns all set classes of a given cardinality. Tonality can be specified, default is 12.
|
||||
Warning: high values of tonality can take a long time to calculate (T=24 takes about a
|
||||
minute on an Intel i7-13700H CPU).
|
||||
"""
|
||||
def _powerset(seq):
|
||||
"""Set of all possible unique subsets."""
|
||||
|
|
@ -543,72 +334,36 @@ class SetClass(list):
|
|||
return set(SetClass(*i, tonality=tonality) for i in _powerset(range(tonality)) if len(i) == cardinality and 0 in i)
|
||||
|
||||
@classmethod
|
||||
def darkest_of_cardinality(this, cardinality: int, tonality: int = 12) -> set:
|
||||
def darkest_of_cardinality(this, cardinality: int, tonality: int = 12, prime: bool = False) -> set:
|
||||
"""
|
||||
Returns a :class:`set` of all :class:`SetClass` objects with a given :attr:`cardinality` in
|
||||
their darkest forms.
|
||||
|
||||
This produces a smaller set than :attr:`all_of_cardinality`, since it eliminates set classes
|
||||
that are "brighter" transpositions of the darkest :class:`SetClass` returned by the
|
||||
:attr:`darkest_form` property.
|
||||
|
||||
.. warning:: High values of tonality can take a long time to calculate (T=24 takes about a
|
||||
minute on an Intel i7-13700H CPU).
|
||||
|
||||
Args:
|
||||
cardinality (int):
|
||||
The :attr:`cardinality` of the set classes to return.
|
||||
tonality (int):
|
||||
The :attr:`tonality`, or modulus, is the number of uniform divisions of the octave.
|
||||
If unspecified, the default value of 12 is assumed (Western harmony).
|
||||
|
||||
Returns:
|
||||
A :class:`set` of :class:`SetClass` objects in :attr:`darkest_form`.
|
||||
Returns all set classes of a given cardinality, in their darkest forms (ignore rotations).
|
||||
Tonality can be specified, default is 12.
|
||||
Warning: high values of tonality can take a long time to calculate (T=24 takes about a
|
||||
minute on an Intel i7-13700H CPU).
|
||||
"""
|
||||
return set(i.darkest_form for i in this.all_of_cardinality(cardinality, tonality))
|
||||
|
||||
@classmethod
|
||||
def normal_of_cardinality(this, cardinality: int, tonality: int = 12) -> set:
|
||||
def normal_of_cardinality(this, cardinality: int, tonality: int = 12, prime: bool = False) -> set:
|
||||
"""
|
||||
Returns a :class:`set` of all :class:`SetClass` objects with a given :attr:`cardinality` in
|
||||
their Rahn normal form.
|
||||
|
||||
This produces a smaller set than :attr:`all_of_cardinality`, since it eliminates set classes
|
||||
that are transpositions of the normalised :class:`SetClass` returned by the
|
||||
:attr:`rahn_normal_form` property.
|
||||
|
||||
.. warning:: High values of tonality can take a long time to calculate (T=24 takes about a
|
||||
minute on an Intel i7-13700H CPU).
|
||||
|
||||
Args:
|
||||
cardinality (int):
|
||||
The :attr:`cardinality` of the set classes to return.
|
||||
tonality (int):
|
||||
The :attr:`tonality`, or modulus, is the number of uniform divisions of the octave.
|
||||
If unspecified, the default value of 12 is assumed (Western harmony).
|
||||
|
||||
Returns:
|
||||
A :class:`set` of :class:`SetClass` objects in :attr:`rahn_normal_form`.
|
||||
Returns all set classes of a given cardinality, in their (darkest) Rahn normal forms (ignore
|
||||
rotations). Tonality can be specified, default is 12.
|
||||
Warning: high values of tonality can take a long time to calculate (T=24 takes about a
|
||||
minute on an Intel i7-13700H CPU).
|
||||
"""
|
||||
return set(i.rahn_normal_form for i in this.all_of_cardinality(cardinality, tonality))
|
||||
|
||||
@classmethod
|
||||
def bright_rahn_normal_forms(this) -> set:
|
||||
"""
|
||||
The set of Rahn normal forms that are not the same as the darkest form.
|
||||
|
||||
John Rahn's normal form from *Basic Atonal Theory* (1980) is an algorithm to produce a
|
||||
unique form for each set class (see :attr:`rahn_normal_form`). Most of the time it is also
|
||||
the same as the :attr:`darkest_form` (that with the smallest :attr:`brightness` value),
|
||||
except for all the times when that is not the case!
|
||||
|
||||
Returns:
|
||||
A :class:`set` of (:attr:`cardinality`, :attr:`darkest_form`, :attr:`rahn_normal_form`)
|
||||
tuples.
|
||||
unique form for each set class. Most of the time it is also the "darkest" (smallest
|
||||
brightness value), except for all the times when that is not the case; this function returns
|
||||
that list, as a set of (cardinality, darkest, rahn) tuples.
|
||||
"""
|
||||
cases = set()
|
||||
for C in range(13): # 0 to 12
|
||||
for sc in this.all_of_cardinality(C):
|
||||
for sc in SetClass.all_of_cardinality(C):
|
||||
if sc.darkest_form.brightness < sc.rahn_normal_form.brightness:
|
||||
cases.add((C, sc.darkest_form, sc.rahn_normal_form))
|
||||
return cases
|
||||
|
|
@ -616,21 +371,15 @@ class SetClass(list):
|
|||
@classmethod
|
||||
def bright_prime_forms(this) -> set:
|
||||
"""
|
||||
The set of Forte prime forms that are not the same as the darkest form.
|
||||
|
||||
Allen Forte describes the algorithm for deriving the "prime" or zeroed normal form, in his
|
||||
book *The Structure of Atonal Music* (1973) in section 1.2 (pp. 3-5), citing Milton Babbitt
|
||||
(1961). It produces a unique form for each set class (see :attr:`prime_form`), which most of
|
||||
the time is the same as the :attr:`darkest_form` (that with the smallest :attr:`brightness`
|
||||
value), except for all the times when that is not the case!
|
||||
|
||||
Returns:
|
||||
A :class:`set` of (:attr:`cardinality`, :attr:`darkest_form`, :attr:`prime_form`) tuples.
|
||||
(1961). It produces a unique form for each set class, which most of the time is also the
|
||||
"darkest" (smallest brightness value), except for all the times when that is not the case;
|
||||
this function returns that list, as a set of (cardinality, darkest, prime) tuples.
|
||||
"""
|
||||
|
||||
cases = set()
|
||||
for C in range(13): # 0 to 12
|
||||
for sc in this.all_of_cardinality(C):
|
||||
for sc in SetClass.all_of_cardinality(C):
|
||||
if sc.darkest_form.brightness < sc.prime_form.brightness:
|
||||
cases.add((C, sc.darkest_form, sc.prime_form))
|
||||
return cases
|
||||
|
|
|
|||
|
|
@ -1,4 +1,3 @@
|
|||
import pytest
|
||||
from setclass.setclass import SetClass
|
||||
|
||||
|
||||
|
|
@ -6,16 +5,6 @@ from setclass.setclass import SetClass
|
|||
# Functional tests
|
||||
|
||||
|
||||
def test_no_init_args():
|
||||
empty = SetClass()
|
||||
assert empty.pitch_classes == []
|
||||
|
||||
|
||||
def test_non_integer_init_args():
|
||||
with pytest.raises(TypeError):
|
||||
SetClass('Z', 'abc')
|
||||
|
||||
|
||||
def test_zero_normalised_pc():
|
||||
"Pitch classes are normalised to start at zero"
|
||||
a = SetClass(0, 1, 3)
|
||||
|
|
@ -77,99 +66,6 @@ def test_interval_vector_invarant():
|
|||
assert version.interval_vector == iv
|
||||
|
||||
|
||||
def test_z_relations():
|
||||
# Forte 4-Z15 {0,1,4,6} and Forte 4-Z29 {0,1,3,7} both have iv⟨1,1,1,1,1,1⟩
|
||||
z1 = SetClass.from_forte_name('4-Z15')
|
||||
z2 = SetClass.from_forte_name('4-Z29')
|
||||
assert z1 == SetClass(0, 1, 4, 6)
|
||||
assert z2 == SetClass(0, 1, 3, 7)
|
||||
assert z1 in z1.z_relations
|
||||
assert z1 in z2.z_relations
|
||||
assert z2 in z1.z_relations
|
||||
assert z2 in z2.z_relations
|
||||
|
||||
|
||||
def test_forte_name():
|
||||
tests = [
|
||||
('1-1', [0]),
|
||||
('3-11', [0, 3, 7]),
|
||||
('6-34', [0, 1, 3, 5, 7, 9]),
|
||||
('6-35', [0, 2, 4, 6, 8, 10]),
|
||||
('6-Z43', [0, 1, 2, 5, 6, 8]),
|
||||
('12-1', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]),
|
||||
]
|
||||
for (name, pitch_classes) in tests:
|
||||
assert SetClass(*pitch_classes).forte_name == name
|
||||
|
||||
|
||||
def test_forte_name_tonality():
|
||||
assert SetClass(0, 1, 2, tonality=13).forte_name == ''
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Class methods
|
||||
|
||||
|
||||
def test_from_string():
|
||||
tests = [
|
||||
("No integer values in this string", []),
|
||||
("Here is a 1", [0]),
|
||||
("{0, 3, 7}", [0, 3, 7]),
|
||||
(" 0 4 7 ", [0, 4, 7]),
|
||||
("Prélude à l'après-midi d'un faune uses [0,2,4,6,8,9]", [0, 2, 4, 6, 8, 9]),
|
||||
("Works from Leonard notation: [0₁1₂3₁4₂6₂8₂9₃]⁽³¹⁾", [0, 1, 3, 4, 6, 8, 9]),
|
||||
("Repeated numbers: 0,0,1,1,6,8", [0, 1, 6, 8]),
|
||||
("Modulo numbers: 1, 22, 3, 2, 12, 144", [0, 1, 2, 3, 10]),
|
||||
]
|
||||
for (string, pitch_classes) in tests:
|
||||
assert SetClass.from_string(string).pitch_classes == pitch_classes
|
||||
|
||||
|
||||
def test_from_decimal():
|
||||
tests = [
|
||||
(0, []),
|
||||
(1, [0]),
|
||||
(137, [0, 3, 7]),
|
||||
(145, [0, 4, 7]),
|
||||
(853, [0, 2, 4, 6, 8, 9]),
|
||||
(1365, [0, 2, 4, 6, 8, 10]),
|
||||
(4095, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]),
|
||||
]
|
||||
for (decimal, pitch_classes) in tests:
|
||||
assert SetClass.from_decimal(decimal).pitch_classes == pitch_classes
|
||||
|
||||
|
||||
def test_from_decimal_error():
|
||||
with pytest.raises(ValueError):
|
||||
SetClass.from_decimal(4096)
|
||||
# with pytest.raises(ValueError):
|
||||
# sc = SetClass.from_decimal(2048, tonality=11)
|
||||
|
||||
|
||||
def test_from_forte_name():
|
||||
tests = [
|
||||
('1-1', [0]),
|
||||
('3-11', [0, 3, 7]),
|
||||
('6-34', [0, 1, 3, 5, 7, 9]),
|
||||
('6-35', [0, 2, 4, 6, 8, 10]),
|
||||
('6-Z43', [0, 1, 2, 5, 6, 8]),
|
||||
('12-1', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]),
|
||||
]
|
||||
for (name, pitch_classes) in tests:
|
||||
assert SetClass.from_forte_name(name).pitch_classes == pitch_classes
|
||||
|
||||
|
||||
def test_from_forte_name_errors():
|
||||
tests = [
|
||||
'0-1',
|
||||
'',
|
||||
'Wibble',
|
||||
None,
|
||||
]
|
||||
for name in tests:
|
||||
with pytest.raises(ValueError):
|
||||
SetClass.from_forte_name(name)
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Example Forte 5-20 set class
|
||||
f520 = SetClass(0, 1, 5, 6, 8)
|
||||
|
|
@ -190,11 +86,6 @@ def test_brightness():
|
|||
assert f520.brightness == 20
|
||||
|
||||
|
||||
def test_decimal():
|
||||
"Set classes have a unique decimal number (sum of 2 raised to each normalised pitch class value)"
|
||||
assert f520.decimal == 355
|
||||
|
||||
|
||||
def test_pitch_classes():
|
||||
"Set classes have pitch classes"
|
||||
assert len(f520) == 5
|
||||
|
|
@ -211,21 +102,11 @@ def test_versions():
|
|||
assert len(f520.versions) == 5
|
||||
|
||||
|
||||
def test_is_symmetrical():
|
||||
sc = SetClass(0, 1, 2, 5, 9)
|
||||
assert sc.rahn_normal_form == sc.inversion.rahn_normal_form
|
||||
assert sc.is_symmetrical
|
||||
|
||||
sc = SetClass(0, 1, 2, 5, 8)
|
||||
assert sc.rahn_normal_form != sc.inversion.rahn_normal_form
|
||||
assert not sc.is_symmetrical
|
||||
|
||||
|
||||
def test_brightest_form():
|
||||
b = SetClass(0, 1, 2, 3, 4, 6, 7, 8, 10)
|
||||
assert b.brightest_form in b.versions
|
||||
assert b.brightest_form == SetClass(0, 2, 3, 4, 6, 8, 9, 10, 11)
|
||||
assert b.leonard_notation == '[0₁1₁2₁3₁4₂6₁7₁8₂T₂]⁽⁴¹⁾'
|
||||
b = f520.brightest_form
|
||||
assert b in f520.versions
|
||||
assert b == SetClass(0, 4, 5, 9, 10)
|
||||
assert b.leonard_notation == '[0₄4₁5₄9₁T₂]⁽²⁸⁾'
|
||||
|
||||
|
||||
def test_darkest_form():
|
||||
|
|
@ -241,21 +122,6 @@ def test_rahn_normal_form():
|
|||
assert r == SetClass(0, 1, 5, 6, 8)
|
||||
|
||||
|
||||
def test_rahn_prime_form():
|
||||
r = f520.rahn_prime_form
|
||||
assert r == SetClass(0, 2, 3, 7, 8)
|
||||
assert r not in f520.versions
|
||||
assert r in f520.inversion.versions
|
||||
# prime = min(self.rahn_normal_form.decimal, self.inversion.rahn_normal_form.decimal)
|
||||
# return self.inversion.rahn_normal_form if self.inversion.rahn_normal_form.decimal == prime else self.inversion.rahn_normal_form
|
||||
|
||||
|
||||
def test_packed_left():
|
||||
r = f520.packed_left
|
||||
assert r == SetClass(0, 1, 3, 7, 8)
|
||||
assert r in f520.versions
|
||||
|
||||
|
||||
def test_inversion():
|
||||
i = f520.inversion
|
||||
assert i not in f520.versions
|
||||
|
|
@ -287,10 +153,6 @@ def test_complement_brightness():
|
|||
assert f520.complement.brightness == 32
|
||||
|
||||
|
||||
def test_complement_decimal():
|
||||
assert f520.complement.decimal == 935
|
||||
|
||||
|
||||
def test_complement_pitch_classes():
|
||||
assert len(f520.complement) == 7
|
||||
assert len(f520.complement.pitch_classes) == 7
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue